Two Fluorinated Fluoroxy Compounds Containing a Fluorosulfonyl Group

Werner Storzer and Darryl D. DesMarteau*

Received March 1, 1991

The fluoride-catalyzed fluorination of the respective acid fluorides leads to the fluoroxy compounds FOCF₂CF₂SO₂F and FOC- $F_2CF(CF_3)SO_2F$. Their thermal and photolytic stability was investigated as well as their reactions with CO, SO₂, SO₃, and PF₃. Perfluorinated ethers are formed from the reactions with C_2F_4 and C_1F_6 by insertion into the F-O bond.

Introduction

In the last 30 years considerable research has been done in the field of fluoroxy compounds (hypofluorites). A variety of organic and inorganic hypofluorites, mostly perfluorinated, have been prepared,^{1,2} some of them are unusually stable compared to their chlorine analogues, if they exist. The number of functionalized fluorocarbon fluoroxy compounds is very limited at present. Due to their promise as a commercial source of fluorinated ethers, it is important to explore the range of functional groups and substituents that can exist in fluorocarbon hypofluorites. The latter is not easily predicted.

Our work on fluorinated chloroxy compounds containing a fluorosulfonyl group^{3,4} led to a number of addition products by insertion of suitable reagents such as olefins and carbon monoxide into the Cl-O bond. Since these hypochlorites were found to be relatively stable, we predicted that the fluorine analogues would be of comparable or higher stability. If so, there would be the possibility of synthesizing perfluorinated fluorosulfonyl compounds in an analogous way. The well-known synthetic pathway^{1,2} is the fluoride-catalyzed fluorination of corresponding acyl fluorides, $FC(O)CFXSO_2F$ (X = F, CF₃), or in some cases fluorination of metal salts MOCF₂CFXSO₂F is an appropriate method. Herein we report the successful isolation of the first fluorosulfonyl hypofluorites from the acid fluorides.

Experimental Section

General Methods. Gases and volatile materials were handled in either stainless-steel or glass vacuum systems, fitted with Teflon-packed stainless-steel valves or with glass-Teflon stopcocks, respectively. Amounts of gases were determined by PVT measurements using a Wallace and Tiernan Series 1500 differential pressure gauge or by direct weighing. Reactions were carried out in passivated (1 atm of F2, 25 °C) stainless-steel cylinders (75 mL) or in Pyrex glass reactors (100 mL) fitted with glass-Teflon stopcocks and containing a Teflon-coated magnetic stirbar.

IR spectra were recorded on a Perkin-Elmer Model 1430 spectrometer with a 3600 Data Station using 10-cm gas cells with KCl or AgCl windows. In general, NMR spectra were measured on a JEOL FX-90Q or on an IBM NR 200AF spectrometer using CDCl₃ solutions of 1-2 mmol/L concentrations. The chemical shift values are negative to high field of CFCl₃ used as the internal standard. Mass spectra were obtained on a Hewlett-Packard 5985-B spectrometer at 70 eV and 200 °C source temperature for CI (CH₄) and EI; samples were introduced by gas injection.

Reagents. Starting compounds F2, CO, SO2, SO3, PF3, C2F4, C3F6 and KF were obtained commercially whereas $FC(O)CF_2SO_2F(1)$, FC-(O)CF(CF₃)SO₂F (3), and KOCF₂CF₃SO₂F (12) were prepared according to literature methods.^{3,5} Dry KF (not activated) was stored and handled inside a drybox. Caution! Fluorine should only be handled by experienced personnel or after careful consultation of available literature on the safe handling of fluorine. Hypofluorites 2 and 4 under certain conditions are capable of an energetic explosive decomposition and must be handled with extreme caution.

Preparation of the Hypofluorites. 1,1,2,2-Tetrafluoro-1-(fluoroxy)-2-(fluorosulfonyi)ethane (2). A stainless-steel cylinder (75 mL), containing nonactivated potassium fluoride (5.0 g; 86.2 mmol) was charged with $FC(O)CF_2SO_2F 1$ (0.7 g; 3.9 mmol), followed by fluorine (22 mmol) at -196 °C. The reactor was allowed to warm to room temperature during the course of 3 h in a cold empty dewar. The reactor was then cooled to -196 °C, and the excess fluorine was removed by pumping it through a soda lime column. Pure hypofluorite 2 (3.5 mmol; 90.5%) was then obtained as a colorless liquid by pumping through a trap at -110 °C as the reactor warmed to 22 °C in the air.

F^AOCF₂^BCF₂^CSO₂F^D: IR (10 Torr, AgCl) 1475 (vs), 1301 (s), 1249 (vs), 1211 (vs), 1186 (s), 1144 (s), 1127 (s), 994 (s), 896 (OF, m), 829 (s), 804 (s) 656 (m), 610 (s), 537 (m) cm⁻¹; ¹⁹F NMR (-33 °C) A 152.4 (t-t), B -90.8 (sep), C - 109.8 (pent.), D 44.8 (t-t) ppm, ${}^{3}J(AB) = 6.4$, ${}^{4}J(AC) = 4.6$, ${}^{3}J(BC) = 3.9$, ${}^{4}J(BD) = 6.5$, ${}^{3}J(CD) = 4.4$ Hz.

1,1,2,3,3,3-Hexafluoro-1-(fluoroxy)-2-(fluorosulfonyl)propane (4). The same procedure was followed as reported for the preparation of hypofluorite 2, 3 (1.64 g; 7.1 mmol) and fluorine (61 mmol) over KF (5 g; 86.2 mmol) gave pure hypofluorite 4 (1.91 g; 7.1 mmol; 100%) as a pale yellow liquid in a trap cooled to -110 °C

F^AOCF₂^BCF^C(CF₃^D)SO₂F^E: vapor pressure 140 Torr (26 °C); IR (7 Torr, AgCl) 1475 (vs), 1255 (vs), 1192 (s), 1126 (s), 975 (s), 894/879 (OF, w), 826 (s), 800 (s), 737 (m), 617 (s), 544 (w) cm⁻¹; ¹⁹F NMR (-45 (OF, w), 826 (s), 800 (s), 737 (m), 617 (s), 544 (w) cm⁻¹; ¹⁵F NMR (-45 °C) A 157.7 (s, b), B -84.6 (sep), C -165.7 (sep), D -71.3 (pent.), E 55.9 (d-sex.) ppm, ⁴J(BE) \simeq ⁴J(DE) \simeq 10.5, ⁴J(BD) \simeq ³J(CD) \simeq 8.8, ³J(BC) = 8.3, ³J(CE) = 5.1 Hz; MS, major m/z (assignment, %), CI 249 ((M - F)⁺, 6.5), 231 ((MH - 2F)⁺, 15.7), 211 ((M - 3F)⁺, 75.5), 145 (C₂F₃O₂S⁺, 29.7), 135 (C₂F₅O⁺, 71.5), 131 (C₃F₅⁺, 31.4), 119 (C₂F₅⁺, 100), 103 (HSO₂F₂⁺, 39.4), 101 (C₂HF₄⁺, 75.5); MS, major m/z (assignment, %), EI 119 (C₂F₅⁺, 35.4), 69 (CF₃⁺, 100), 67 (SOF⁺, 63.4). **Perform** of KOCF (CF SOF E (12) with Elumerine Mathed A

Reaction of KOCF2CF2SO2F (12) with Fluorine. Method A. A stainless-steel cylinder (75 mL) was loaded with 12 (0.54 g; 2.3 mmol) and evacuated, and at -196 °C, fluorine (2.3 mmol) was condensed in. The reactor was then transferred into a Freon-11 bath (-110 °C) and warmed to -40 °C during a period of 4 h. The cylinder was shaken and a small explosion occurred inside, indicated by a ping. After the cylinder was warmed to room temperature (5 min), volatile products were separated by trap to trap distillation. No noncondensable materials were observed. Sulfonyl fluoride and carbonyl fluoride (3.5 mmol) were trapped at -158 °C, and tetrafluoromethane (0.56 mmol) was trapped at -196 °C. The solid remaining in the cylinder (0.3 g) was KF and unreacted 12.

Method B. A stainless-steel cylinder (75 mL) was charged with 12 (0.41 g; 1.71 mmol) and fluorine (2.0) at -196 °C in vacuo; the bomb was warmed to -70 °C from -196 °C during a period of 2 h in a cold empty dewar. The fractionation gave a mixture of COF₂ and CF₃SO₂F⁶ (2.0 mmol) at -110 °C and a mixture of CF₄ and SO₂F₂ (0.23 mmol) at -196 °C. The products were identified by their infrared as well as by their ¹⁹F NMR spectra. The remaining solid (0.1 g; 1.7 mmol) was found to be KF

General Procedure for Reactions Involving Hypofluorites 2 and 4. A glass reactor (100 mL), fitted with a Teflon stopcock was loaded successively with the corresponding hypofluorite, CFCl₃ solvent, if used, and the suitable reactant at -196 °C in vacuo. The vessel was transferred into a Freon-11 bath (-110 °C) and warmed to room temperature during the time as indicated, or the bulb was warmed in a cold empty dewar within 3 h. Purification was done under dynamic vacuum by trap to trap fractionation. In one case, reaction of 2 with C_2F_4 , products were separated by gas chromatography. The compounds were characterized as follows, and the reactions are summarized in Table I.

CF3^ACF2^BOCF2^CCF2^DSO2F^E (5): IR (10 Torr) 1472 (vs), 1328 (s), 1235 (vs), 1156 (vs), 1105 (vs), 994 (m), 825 (s), 802 (s), 728 (m), 647

⁽¹⁾

⁽²⁾

Shreeve, J. M. Adv. Inorg. Chem. Radiochem. 1983, 26, 119. Lustig, M.; Shreeve, J. M. Adv. Fluorine Chem. 1974, 13, 2710. Storzer, W.; DesMarteau, D. D. Inorg. Chem., in press. Storzer, W.; DesMarteau, D. D. J. Fluorine Chem., submitted for (4)

publication. England, D. C.; Dietrich, M. A.; Lindsey, R. V., Jr. J. Am. Chem. Soc. (5) 1960, 82, 6181.

⁽⁶⁾ Sartori, R.; Habel, W. J. Fluorine Chem. 1980, 16, 265.

Table I. Summary of Reactions of Fluoroxy Compounds

and distant

reactants (mmol)	time, h; g of CFCl ₃	products (mmol; %; trap temp, °C)
$2(5.0); C_2F_4(5.5)$	6; 3	5 (0.2, 4.0; -112 (GC)); 6^7 (0.2; 4.0; -112 (GC)); $COF_2 + C_2F_6 + C_2F_4 + CF_3SO_2F$ (2.3; -196)
$2(2.0); C_3F_6(2.5)$	10; 1.4	7 + 8 (0.1; 5.4; -60); COF ₂ + C ₃ F ₆ + CF ₃ SO ₂ F (5.0; -196)
$4(3.0); C_2F_4(3.4)$	30; 3.2	9 (1.0; 33.3; -60); $CFC1_3 + C_2F_3SO_2F^8$ (3.5 g; -110); COF_2 (0.7; -196)
4 (2.0); C_3F_6 (2.5)	10; 1.4	10 + 11 (0.9; 47; -60); $COF_2 + C_3F_6 + C_2F_3SO_2F$ (2.2; -196)
4 (2.0); CO (3.0)	15; 3.2	$3 + C_2F_3SO_2F + CFCl_3 (-110); COF_2 (0.3; 15; -196)$
4 (2.9); SO ₂ (3.1)	15; 4.1	$C_2F_3SO_2F + SO_2 + CFCl_3 (-110); COF_2 + CFCl_3 + SO_2 (3.8; -196)$
4 (1.0); SO ₃ (1.0)	24; none	$C_{2}F_{3}SO_{2}F(1.0; 100; -110); SO_{1}(1.0, -60); COF_{2}(1.0; 100; -196)$
4 (1.0); PF ₁ (1.0)	3; none	3 (1.0; 100; -110); PF ₃ + POF ₃ (1.0; 100; -196)

(m), 609 (m) cm⁻¹; MS, major m/z (assignment, %), CI 319 ((M + H)⁺, 2.0), 299 ((M - F)⁺, 6.4), 183 (C₂F₄SO₂F⁺, 100), 133 (CF₂SO₂F⁺, 11.7), 119 (C₂F₅⁺, 29.1), 100 (C₂F₄⁺, 7.0); ¹⁹F NMR A -87.1 (pent.), B -88.5 (d-d-m), C -82.5 (br m), D -112.7 (d-t), E 45.3 (pent.) ppm, ³J_{AB} \simeq ⁵J_{AC} \simeq 1.0, ⁴J_{BC} = 12.7, ³J_{CD} = 2.9, ⁴J_{CE} \simeq ³J_{DE} \simeq 6.2 Hz.

 $FSO_2CF_2CF_2SO_2F$ (6):⁷ IR (12 Torr) 1474 (vs), 1243 (vs), 1212 (vs), 1149 (vs), 876 (s), 827 (vs), 805 (s), 779 (s), 617 (vs), 561 (s), 483 (m), 453 (m) cm⁻¹; ¹⁹F NMR SO₂F 47.9 (pent.), CF₂ -107.5 ("t") ppm, ³J_{FF} \simeq ⁴J_{FF} = 7.3 Hz.

 $CF_3^{A}CF_2^{B}OCF_2^{C}CF^{D}(CF_3^{E})SO_2F^{F}$ (9): IR (5 Torr) 1473 (vs), 1254 (vs), 1207 (s), 1164 (vs), 1132 (vs), 1103 (s), 1058 (m), 976 (m), 822 (s), 800 (m), 744 (m), 712 (m), 615 (s), 533 (w) cm⁻¹; MS, major *m/z* (assignment, %), CI 487 ((M + C_2F_3)⁺, 9.0), 349 ((M - F)⁺, 82.3), 285 ((M - SO_2F)⁺, 20.1), 233 ((M - C_2F_5O)⁺, 100), 211 (C_3F_5O_3S⁺, 23.9), 169 (C_3F_7⁺, 23.4), 119 (C_2F_3⁺, 15.0), 101 (C_2HF_4⁺, 5.9); MS, major *m/z* (assignment, %), EI 169 (C_3F_7⁺, 8.5), 131 (C_3F_5⁺, 12.2), 119 (C_2F_5⁺, 39.0), 100 (C_2F_4⁺, 9.5), 83 (SO_2F⁺, 10.3), 69 (CF_3⁺, 86.9), 67 (SOF⁺, 100); ¹⁹F NMR A -87.3 (m), B -88.8 (d-d-q), C -75.2 (d-t-q), D -166.2 (d-sex.), E -71.9 (d-q), F 55.1 (d-sex.) ppm, ³J_{AB} = 2.2, ⁴J_{BC} = 12.9, ³J_{CD} = 7.7, ⁴J_{CE} = 9.7, ³J_{DE} = 7.3, ⁴J_{CF} ~ ⁴J_{EF} = 10.2, ³J_{DF} = 3.9 Hz.

CF₃^ACF₂^BCF₂^COCF₂^DCF^E(CF₃^F)SO₂F^G (10) (67%) and (CF₃^A)₂CF^BOCF₂^CCF^D(CF₃^E)SO₂F^F (11) (33%): IR (7 Torr) 1474 (vs), 1345 (s), 1262 (vs), 1165 (vs), 1122 (vs), 1003 (s), 974 (s), 848 (w), 821 (s), 780 (w), 746 (m), 723 (m), 710 (m), 617 (s), 537 (w) cm⁻¹; MS, major *m*/*z* (assignment, %), CI 433 ((M + CH₃)⁺, 6.0), 399 ((M - F)⁺, 100), 335 ((M - SO₂F)⁺, 11.2), 233 (C₃F₆SO₂F⁺, 69.2), 211 (C₃F₅O₃S⁺, 9.5), 169 (C₃F₇⁺, 52.2); MS, major *m*/*z* (assignment, %), EI 169 (C₃F₇⁺, 83.2), 119 (C₂F₃⁺, 14.1), 100 (C₂F₄⁺, 10.7), 69 (CF₃⁺, 100), 67 (SOF⁺, 56.9); ¹⁹F NMR (10) A -81.7 (t), B -30.2 (s), C -84.6 (t-q), D -75.0 (m), E -166.2 (d-sex.), F -71.9 (pent.), G 55.2 (d-sex.) ppm, ³J_{AB} < 1, ⁴J_{AC} = 7.3, ³J_{BC} < 1, ⁴J_{CD} = 13.1, ³J_{DE} = 8.0, ³J_{EF} = 8.0, ⁴J_{DG} = 10.2, ³J_{DE} = 4.0, ⁴J_{FG} = 10.2 Hz; ¹⁹F NMR (11) A -81.05 (br s), B -145.9 (t-m), C -72.54 (m), D -165.9 (d-sex.), E -71.9 (pent.), F 54.9 (d-sex.) ppm, ³J_{AB} = 2.2, ⁴J_{BC} = 21.8, ³J_{CD} = 7.2, ⁴J_{CE} = 8.5, ⁴J_{CF} = 10.2, ³J_{DE} = 7.2, ³J_{DF} = 4.0, ⁴J_{EF} = 10.2 Hz.

Results and Discussion

Preparation of Hypofluorites. The fluoroxy compounds 2 and 4 were obtained in excellent yields when the acid fluorides 1 and 3 were treated with an excess of fluorine over nonactivated (dried under vacuum at 100 °C, but not fused and ground to a fine powder) potassium fluoride catalyst (eq 1). When activated KF

$$\begin{array}{rcl} FC(0)CFXSO_2F + F_2 & \xrightarrow{KF} FOCF_2CFXSO_2F & (1) \\ 1, X = F & 2 (90.5\%) \\ 3, X = CF_3 & 4 (100\%) \end{array}$$

(8) DeMarco, R. A.; Shreeve, J. M. Inorg. Chem. 1973, 12, 1896.

Scheme I

$$FOCF_2CFXSO_2F \longrightarrow F \cdot + \cdot OCF_2CFXSO_2F$$

2, 4
 $\cdot OCF_2CFXSO_2F \longrightarrow OCF_2 + \cdot CFXSO_2F$
 $\cdot CFXSO_2F + 2 \text{ or } 4 \longrightarrow FCFXSO_2F + \cdot OCF_2CFXSO_2F$

or CsF was used under the same conditions, no fluoroxy compounds were observed; instead a mixture of CF_4 , COF_2 , SO_2F_2 , and SF_6 was obtained.

The reaction of the potassium alkoxide 12 with fluorine, in two cases, led to different results but did not yield the fluoroxy compound 2 (eqs 2 and 3); only fragments of 12 or 2 were formed

$$KOCF_{2}CF_{2}SO_{2}F + 2F_{2} \xrightarrow{\text{explodes} \\ -40 \text{ °C}} KF, COF_{2}, CF_{4}, SO_{2}F_{2} (2)$$

$$12 + F_{2} \xrightarrow{-110 \text{ °C to room temp}} KF, COF_{2}, CF_{4}, SO_{2}F_{2}, CF_{3}SO_{2}F (3)$$

in the explosive reaction (eq 2). The reactivity of 12 is apparently too high under these conditions, and the reaction was uncontrolled.

Both hypofluorites are identified by their infrared and ¹⁹F NMR spectra; 4 is also identified by its mass spectrum, which of course shows a fragmentation similar to that of its precursor 3. Significant vibrations observed in the IR spectra are $\nu(SO_2) = 1475$ cm⁻¹ and $\nu(OF) = 896$ (2) and 894 (4) cm⁻¹ in addition to strong bands in the region for $\nu(CF)$ and $\nu(SO_2)$ between 1300 and 1100 cm⁻¹ and $\nu(SF) = 829$ (2) and 826 (4) cm⁻¹.

The ¹⁹F NMR chemical shift values and coupling constants of the CF and SF fluorines are similar to the ones observed for the respective chloroxy compounds.³ The resonance of the FO fluorine is observed in the typical low-field region⁹ at +152.4 (2) and +157.7 (4) ppm. No J_{FF} coupling across the oxygen atom is observed in 4 whereas for 2 the OF signal is a triplet of triplets with coupling constants similar to those found for ClCF₂CF₂OF.⁹

Stability. The thermal and photolytic behavior of the hypofluorites was tested in the same way as was done for the respective chlorine derivatives,³ by observing the change of the IR spectra at 10 Torr of samples of 2 and 4 in a 10-cm cell. The decomposition in CDCl₃ solution was also checked by ¹⁹F NMR spectroscopy at 25 °C. The thermolysis proceeds according to eqs 4 and 5 in the gas phase as well as in solution.

FOCF₂CF₂SO₂F
$$\xrightarrow{40^{\circ}C, dark}$$
 CF₃SO₂F + COF₂ (4)
2 (100%, 10 min.)

FOCF₂CF(CF₃)SO₂F
$$\xrightarrow{40^{\circ}C, \text{ dark}}$$
 C₂F₅SO₂F + COF₂ (5)
4 + 3 + "F₂"
(100%, 10 h)

The major products are carbonyl fluoride and the corresponding perfluoroalkylsulfonyl fluorides. The respective products were found in the photolysis of the hypochlorites,³ whereas the thermolysis of the latter led to 1 and 3 by the loss of ClF. The analogous reaction (eq 5) is true for 4, forming 3 (definitely not

⁽⁷⁾ Koshar, R. J. Eur. Pat. Appl. EP57,327; U.S. Appl. 229,870, Jan 30, 1981. NMR data are identical with that of an authentic sample.

⁽⁹⁾ Hoffman, C. J. Fluorine Chem. Rev. 1968, 2, 161.

present in 4) and fluorine (assumed) as minor products. Irradiation of the gaseous hypofluorites with UV light from a medium-pressure Hg lamp gives the same products (eqs 6 and 7); no acyl fluorides 1 or 3 were observed.

$$2 \xrightarrow{h v, 25^{\circ}C} CF_{3}SO_{2}F^{+}COF_{2}$$
(6)
(100%, 5 min.)

4 h v. 25°C
$$C_2F_5SO_2F^+COF_2$$
 (7)
(100%, 1 h)

From this work an interesting comparison can be made with the analogous hypochlorites³ regarding thermal and photolytic stability:

thermal: $ClOCF_2CF(CF_3)SO_2F \simeq FOCF_2CF(CF_3)SO_2F >$ $ClOCF_2CF_2SO_2F > FOCF_2CF_2SO_2F$

photolytic:
$$FOCF_2CF(CF_3)SO_2F \gg ClOCF_2CF(CF_3)SO_2F$$

 $\simeq FOCF_2CF_2SO_2F > ClOCF_2CF_2SO_2F$

In all cases, the branched CF₃ compound is much more stable than the primary derivatives. A reasonable process for the decomposition is shown in Scheme I. When $X = CF_3$ (4), the greater stability can then be rationalized on the basis of the higher stability of $OCF_2CF(CF_3)SO_2F$ and/or $OCF(CF_3)SO_2F$ and a slower chain transfer step.

Reactions with Olefins. With respect to our work on the hypochlorites $ClOCF_2CFXSO_2F$ (X = F, CF₃),⁴ we provide some comparative results of the reaction chemistry of the corresponding fluoroxy compounds with simple olefins.

Since $XOCF_2CF_2SO_2F$ (X = F, Cl) and $XOCF_2CF(CF_3)SO_2F$ (X = F, Cl) each show similar thermal and photochemical stabilities, they are expected to have comparable reactivities in the reactions with olefins. In order to obtain perfluorinated ethers with a fluorosulfonyl functional group, 2 and 4 were reacted with tetrafluoroethene and hexafluoropropene (eqs 8-11).

4 +
$$C_2F_4 \longrightarrow C_2F_5OCF_2CF(CF_3)SO_2F$$
 (9)
9 (33.3%)

$$2 + C_3F_6 \longrightarrow CF_3CF_2CF_2OCF_2CF_2SO_2F + (5\%) \qquad 7 (70\%)$$

$$(CF_3)_2 CFOCF_2 CF_2 SO_2 F$$
 (10)
8 (30%)

$$4 + C_3F_6 \xrightarrow{} CF_3CF_2CF_2OCF_2CF(CF_3)SO_2F + (47\%) \qquad 1 \quad 0 \quad (67\%)$$

$$(CF_3)_2 CFOCF_2 CF(CF_3) SO_2 F$$
 (11)
1 1 (33%)

All reactions lead mainly to COF_2 and CF_3SO_2F (from 2) and $C_2F_5SO_2F$ (from 4), as decomposition products. The yield of all ethers, in general, is lower than that obtained from the analogous hypochlorites.⁴ In the reaction of 2 with C_2F_4 , small amounts of C_2F_6 and 6 were isolated in addition to the low yield of 5. These products, along with the major decomposition products of 2 (Scheme I) can be rationalized as shown in Scheme II. One might reasonably expect to observe 6 and C_3F_8 in the reaction of 2 with C_3F_6 , but none were detected.

The reaction of 2 or 4 with hexafluoropropene, in both cases, yields a mixture of the possible regioisomers 7/8 and 10/11, respectively. The pairs are distinguishable by their ¹⁹F NMR spectra recorded at 188.131 MHz; the integration of certain multiplets (fluorines labeled B in 7/8 and 10/11 in the Experimental Section) indicates the ratio of the two isomers n:iso = 70%:30%. The FO- compounds exhibit a much lower regioselectivity than the CIO- analogues.⁴ Similar regiospecificity has

2
$$\longrightarrow$$
 F' + OCF₂CF₂SO₂F (A)
F' $\xrightarrow{C_2F_4}$ C_2F_5 $\xrightarrow{2}$ $C_2F_6 + A$
A $\xrightarrow{C_2F_4}$ C_2F_4 $OCF_2CF_2SO_2F$ $\xrightarrow{2}$ $5 + A$
A \longrightarrow OCF₂ + CF₂SO₂F $\xrightarrow{2}$ $CF_3SO_2F + A$

been observed for reactions of C₃F₆ with FOClO₃,¹⁰ CF₃OF,¹¹ and TeF₅OF.¹²

All compounds 5-11 are well identified by their mass, IR, and ¹⁹F NMR spectra. The ¹⁹F NMR spectrum of 6 was identical with that of an authentic sample. The mass spectra of 5 and 7 + 8 contain only weak peaks of $(MH)^+$ and $(M - F)^+$; the base peak for 7 + 8 is $(M - SO_2F)^+$. Intense fragments in the spectra of 9 and 10 + 11 are $(M - F)^+$ or $(M - C_2F_5O)^+$ (9). In the CI mass spectra of the mixture of 7-8 and of 9, ions corresponding to the addition of CF_3 and C_2F_5 , respectively, to the parent M⁴ are observed. These are assumed to be a result of recombination reactions and could not be assigned to any reasonable impurity. The IR spectra of all addition compounds, including 6, show a very strong band for $\nu(SO_2) = 1472 - 1474$ cm⁻¹ and several very strong and broad bands for $\nu(CF)$ and $\nu(SO_2)$ in the region 1300-1100 cm⁻¹, as well as a characteristic strong band at 827-821 cm⁻¹ for ν (SF). The ¹⁹F NMR signals are found in the expected regions and show comparable coupling constants for the analogous addition compounds with the respective hypochlorites.⁴

Reactions of 4 with CO, SO₂, SO₃, and PF₃. Since 4 is more stable than 2, it was used for the reactions with the titled compounds. In the case of the chloro analogues of 2 and 4, both readily insert CO into the Cl-O bond, forming stable chloroformates.³ When reacted with SO₂, however, they decompose to ClCFXSO₂F $(X = F, CF_3)$ and COF_2 by SO_2 catalysis. The attempted synthesis of a fluoroformate, ¹³ FC(O)OCF₂CF(CF₃)SO₂F, a fluorosulfonyl ester, FSO₂OCF₂CF(CF₃)SO₂F, and a peroxyfluorosulfonyl ester sulfate, ¹⁴ FSO₂OOCF₂CF(CF₃)SO₂F, from 4 was unsuccessful (eq 12).

$$4 \xrightarrow{(CO, SO_2, SO_3)} C_2F_5SO_2F + COF_2$$
(12)

No sulfur-fluorine-containing products other than $C_2F_5SO_2F$ were observed with SO_2 or SO_3 . This result is quite different from that reported for the reactions of the most stable hypofluorite CF₃OF with SO₂ and SO₃.²

Fluoroxytrifluoromethane is known to oxidatively fluorinate phosphorus(III) compounds to difluorophosphorus(V) compounds,¹⁵ and CF₂(OF)₂ converts PF₃ to PF₅ and POF₃.¹⁶ Similarly, the oxidation of phosphorus trifluoride to phosphorus pentafluoride by 4 succeeded in quantitative yield (eq 13) as expected. A trace of phosphoryl fluoride was also observed.

$$PF_3 + 4 \rightarrow PF_5 + 3 \tag{13}$$

Conclusion

The successful isolation of the first functionalized fluoroxy compounds containing the fluorosulfonyl group was achieved. The stabilizing effect of a β -CF₃ group in these new compounds was

- Schack, C. J.; Christe, K. O. Inorg. Chem. 1979, 18, 2619.
 Johri, K. K.; DesMarteau, D. D. J. Org. Chem. 1983, 48, 242.
 Schack, C. J.; Christe, K. O. J. Fluorine Chem. 1984, 24, 467.
 Aymonino, P. J. Chem. Commun. 1965, 241.
 Van Meter, W. P.; Cady, G. H. J. Am. Chem. Soc. 1960, 82, 6005.
 Chang, L. L.; Denney, D. Z.; Denney, D. B.; Hsu, Y. Y. Phosphorus 1974, 4, 265. De'Ath, N. J.; Denney, D. B.; Denney, D. Z.; Hsu, Y. F. J. Am. Chem. Soc. 1976, 98, 768. Denney, D. B.; Denney, D. Z.; Hsu, Y. F. Phosphorus 1974, 4, 213.
 Hohorst, F. A.; Shreeve, J. M. Inorg. Chem. 1968, 7, 624.

clearly demonstrated. Compared to analogous hypochlorites, these fluoroxy compounds give only low yields of addition products with fluorinated olefins due to the rapid decomposition of the intermediate 'OCF₂CFXSO₂F radicals formed in these reactions.

Acknowledgment. The partial financial support of this research by the National Science Foundation and the Gas Research Institute (Grant 5084-260-1086) is gratefully acknowledged.

Registry No. 1, 677-67-8; 2, 115784-53-7; 3, 754-41-6; 4, 115784-54-8; 5, 67990-78-7; 6, 84246-33-3; 7, 14856-94-1; 8, 132145-34-7; 9, 135773-61-4; 10, 135773-62-5; 11, 135773-63-6; 12, 81439-24-9; C2F4, 116-14-3; C₃F₆, 116-15-4; FC(O)OCF₂CF(CF₃)SO₂F, 135773-64-7; FSO₂OCF₂CF(CF₃)SO₂F, 135773-65-8; FSO₂OOCF₂CF(CF₃)SO₂F, 135773-66-9; C₂F₅SO₂F, 354-87-0.

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Reactions of N, N, N'-Tris(trimethylsilyl)benzamidine with Organochalcogen Halides: Formation of Diazenes via the Resonance-Stabilized Radicals PhCN₂(EPh)₂ and the X-ray Structure of PhCN₂(SCCl₃)₃

Vadapalli Chandrasekhar, Tristram Chivers,* Santhanathan S. Kumaravel, Masood Parvez, and M. N. Sudheendra Rao

Received July 13, 1991

The reactions of N,N,N⁴tris(trimethylsilyl)benzamidine (1) with organosulfur chlorides in a 1:1 or 1:3 molar ratio in methylene dichloride produce the metathetical products PhC[N(SiMe_3)_2](NSR) [R = Ph, CCl_3, 2,4-C_6H_3(NO_2)_2] or PhCN_2(SR)_3 [R = Ph, CCL_3, 2,4-C_6H_3(NO_2)_3] or PhCN_2(SR)_3 [R = Ph, CCL_3, 2,4-C_6H_3(NO_2)_3] or PhCN_3(NO_2) [R = Ph, CCL_3, 2,4-C_6H_3(NO_2)_3] or PhCN_3(NO_2) or CCl₃, 2,4-C₆H₃(NO₂)₂], respectively. The structure of PhCN₂(SCCl₃)₃ (4b) was determined by X-ray crystallography. The crystals of 4b are triclinic, space group P₁, with a = 9.972 (2) Å, b = 10.517 (3) Å, c = 10.968 (3) Å, $\alpha = 109.75$ (2)°, $\beta = 93.31$ (2)°, $\gamma = 102.76$ (2)°, V = 1044.8 Å³, and Z = 2. By contrast, the compound PhCN₂(SPh)₃ is thermally unstable and the reactions of 1 with PhECl (E = S, Se) in a 1:3 molar ratio in methylene dichloride produce the intensely colored diazenes trans-PhEN-(Ph)CN=NC(Ph)NEPh. The ESR spectra of these reaction mixtures consist of a five-line (1:2:3:2:1) signal consistent with a radical mechanism involving the intermediate formation of the resonance-stabilized radicals $PhC(NEPh)_2^{\circ}$ (E = S, g = 2.0071, $a_N = 0.575 \text{ mT}$; E = Se, g = 2.0201, $a_N = 0.59 \text{ mT}$). The reactions of 1 with RSeCl₃ (R = Me, Ph) also yield the diazenes trans-RSeN(Ph)CN=NC(Ph)SeR (2a, R = Me; 2b, R = Ph). The reaction of 4-CF₃C₆H₄CN₂(SiMe₃)₃ with PhSCl in a 1:3 molar ratio produces the eight-membered ring $(4-CF_3C_6H_4)_2C_2N_4S_2Ph_2$, as a minor product, in addition to the isomeric diazene. The eight-membered rings $Ph_2C_2N_4S_2R_2$ [R = CCl₃, 2,4-(NO_2)₂C₆H₃] are obtained from the reaction of PhC(NSR)[N(SiMe_3)₂] with 2 molar equiv of PhSeCl.

Introduction

Organic sulfur-nitrogen (S-N) compounds have attracted widespread attention in recent years.^{1,2} This activity is due to an intrinsic curiosity in the unusual molecular and electronic structures of these π -electron-rich compounds and to their possible role as low-dimensional conducting materials.^{3,4} This interest has been extended to organic selenium-nitrogen (Se-N) compounds, e.g. the cyclic 7- π -electron radicals 1,2,4,6-selenatriazinyl, $Ph_2C_2N_3Se^{5}$ and 1,2,3,5-diselenadiazolyl, $PhCN_2Se_2^{5}$ In a seminal paper Woodward et al. reported the first dithiatetrazocines $1,5-R_2C_2N_4S_2$ (R = Me₂N, Ph) and showed that the structures of these ring systems are remarkably dependent on the nature of the exocyclic substituent.⁷ In an attempt to prepare the unknown $C_2N_4Se_2$ ring, we found that the reaction of PhCN₂(SiMe₃)₃ (1) with $RSeCl_3$ (R = Me, Ph) produces intensely colored materials identified by an X-ray structure determination of 2a as diazenes.8

- Morris, J. L.; Rees, C. W. Chem. Soc. Rev. 1986, 15, 1.
- Oakley, R. T. Prog. Inorg. Chem. 1988, 36, 1. Whangbo, M.-H.; Hoffman, R.; Woodward, R. B. Proc. R. Soc. London (3) A 1979, 366, 23.
- (4) Chivers, T.; Richardson, J. F.; Smith, N. R. M. Mol. Cryst. Liq. Cryst. 1985, 125, 319.
- (5) Oakley, R. T.; Reed, R. W.; Cordes, A. W.; Craig, S. L.; Graham, J. B. J. Am. Chem. Soc. 1987, 109, 7745.
 (6) Del Bel Belluz, P. D.; Cordes, A. W.; Kristof, E. M.; Kristof, P. V.;
- Liblong, S. W.; Oakley, R. T. J. Am. Chem. Soc. 1989, 111, 9276.
 Ernest, I.; Holick, W.; Rihs, G.; Schomburg, D.; Shoham, G.; Wenkert,
 D.; Woodward, R. B. J. Am. Chem. Soc. 1981, 103, 1540.
 For the preliminary communication, see: Chandrasekhar, V.; Chivers,
- (8) T.; Fait, J. F.; Kumaravel, S. S. J. Am. Chem. Soc. 1990, 112, 5374.

We also mentioned briefly that the diazene 2b and its sulfur analogue, 2c, can be prepared in good yields by the reaction of 1 with PhECl (E = S, Se) in a 1:3 molar ratio.

We describe here the full details of an investigation of the reactions of 1 with organochalcogen chlorides, which includes (a) the preparation and characterization of the monosubstituted products $PhCN_2(SiMe_3)_2(SR)$ [3a, R = Ph; 3b, R = CCl_3 ; 3c, $R = 2.4 - C_6 H_3 (NO_2)_2 (DNP)$], (b) the preparation of the trisubstituted derivatives $PhCN_2(SR)_3$ [4b, R = CCl_3 ; 4c, R = 2,4-DNP] and the X-ray structure of 4b, (c) the identification by ESR spectroscopy of the resonance-stabilized radicals PhC(NEPh)2* [5a, E = S; 5b, E = Se] as intermediates in the formation of the diazenes 2b and 2c, and (d) the characterization of the eightmembered rings $Ar_2C_2N_4S_2R_2$ [6a, Ar = 4-CF₃C₆H₄, R = Ph; **6b**, Ar = Ph, R = CCl_3 ; **6c**, Ar = Ph, R = 2,4-(NO₂)₂C₆H₃].

Experimental Section

Reagents and General Procedures. All reactions and the manipulation of moisture-sensitive compounds were carried out under an atmosphere